

Innovative Integrated Instrumentation for Nanoscience

High Resolution Electronic Measurements in Nano-Bio Science

Measuring quantum devices below 4K Cryogenic electronics

Giorgio Ferrari

Milano, June 2025

Outline

- Motivation for cryogenic electronics
 - Challenges
 - Design rules
- Examples

DiVincenzo criteria

Minimum requirements for the physical implementation of a quantum computer

- Robust, reproducible, and scalable qubit technology
- Qubit initialization
- Universal set of gates (single-qubit operations and two-qubit operations)
- Long-coherence time (figure of merit: number of gates before the state is lost for the environmental disruptions)
- Qubit measurement

[DiVincenzo 2000]

Google quantum computer (sycamore)

[J. Bardin, ISSSCC 2022]

54 qubits (transmons)

<u>Target</u> for useful applications: **10⁶ physical qubit!!!**

Cables connecting qubits (≪4K) to room temperature electronics are a limiting factor! (≈ 2 coaxial cables /qubit)

POLITECNICO MILANO 1863

G. Ferrari – Cryogenic electronics

How to scale up QCs?

Today's Quantum Computers (and tomorrow?)

[F. Sebastiano, ISSCC 2025]

POLITECNICO MILANO 1863

G. Ferrari – Cryogenic electronics

The role of cryogenic electronics

should be operated at cryogenic temperature, ideally on the same chip of the qubits, to minimize the number of cables!

[Bardin, ISSCC 2019]

oubits

~50+

Fridge

Cryogenic quantum controller

Trigger a SPI Si Attenuators Dielectric Si/SiGe 2 mm 300 K 1–5 K 100 nm 20 mK Today

Tomorrow

Future

X. Xue et al., "CMOS-based cryogenic control of silicon quantum circuits," Nature, pp. 205-210, 2021

Outline

- Motivation for cryogenic electronics
 - Challenges
 - Design rules
- Examples

Freeze-out and degenerate semiconductor

Electronics below the freeze-out temp.

Silicon MOSFETs in standard tech. operate below 40K!

Many GaAs devices operate at cryogenic temperature: degenerate at 10¹⁶ cm⁻³ Limitation: small (and expensive) scale integration

MOSFET operating at 4K

Standard analog CMOS Technology 3.3V, 0.35µm

PMOS 50µm / 0.7µm

very similar to the room temperature behavior!

Effects of low temperature

TSMC 40-nm bulk CMOS process

$V_{\rm G} \, \left[V \right]$

- substrate Fermi level shifts near to E_C (pMOS) → increase of the threshold voltage
- reduction in electron-phonon scattering → increase in carrier mobility

P. A. T'Hart, et al. IEEE J. Electron Devices Soc., pp. 263–273, 2020]

Problems are tech and size dependent

R. M. Incandela, et al.,pp. 58–61, 2017 ESSDERC.

Design rule 1: characterize the technology!

No simulation models provided by the foundry

Experimental characterization of YOUR technology is MANDATORY

For simple circuits 1 nMOS and 1 pMOS is enough series or parallel combinations of these basic transistors

less conductive MOS

more conductive MOS

POLITECNICO MILANO 1863

G. Ferrari – Cryogenic electronics

Design rule 2: pay attention to mismatch!

worsening of mismatch by a factor of 1.5-3 at low temperature compared to room temperature (tech dependent).

Degradation of the offset voltage, linearity of ADC, DAC, bias setting,...

Design rule 3: subthreshold is critical

LFoundry 180nm: parameters from 300K to 4K

- $V_{T,n}$ from 0.3V to 0.5V
- V_{T,p} from -0.65V to -1.1V
- Power supply: still 1.8V
- no subthreshold

and

stack up few transistors!

and/or add complexity:

- Back-biasing if SOI tech.
 [Bohuslavskyi 2018]
- Feed-forward Body Biasing [Overwater 2023]

limit the V_{DS}!

or use more scaled technologies

Noise

Thermal noise: $\overline{e_n^2} = 4kT \frac{\gamma}{g_m}$ **T** \checkmark , $g_m \overrightarrow{n} \rightarrow noise \checkmark \checkmark$ (0.1nV/ \sqrt{Hz})

For scaled tech.: white noise can be limited by **shot-noise** (T independent) **Self-heating**: MOS channel can be at higher T (reported >40K for T_{amb} =4K)

Flicker noise: increase or independent (tech and size dependent)

POLITECNICO MILANO 1863

dominant noise up to tens of MHz 28nm FDSOI tech.

L. Le Guevel *et al.*, "Low-power transimpedance amplifier for cryogenic integration with quantum devices," *Appl. Phys. Rev.*, 2020

101

102

103

100

Outline

- Spin detection using room temperature instrumentation
- Cryogenic electronics
 - Challenges
 - Design rules
- Examples

Experimental set-up to study quantum devices

Cryogenic transimpedance amplifier

F. Guagliardo et al., in "Single Atom Nanoelectronics", ed. E. Prati and T. Shinada, Pan Stanford Publishing (2013)

Measurements at 4 Kelvin

R still linear (10MΩ @300K → 24MΩ @ 4.2K)

C is practically unaffected by temperature

Gain, linearity and bandwidth match the simulations

Measurements at 4 Kelvin

Quantum dots with a single ion implanted

S

(a) 1.6

0.8

0.0

(PA)

Single charge state sensing

0.5

Time (ms)

.5

0

T= 300 mK

- 2.3 pA_{RMS} resolution (14 pA)
- 32 kHz Bandwidth (190 kHz) ≈ 30 times better of RT

M. L. V. Tagliaferri et al, *IEEE Trans. Instrum. Meas.*, pp. 1827–1835, Aug. 2016.

Spin qubit readout: measurement technique

[S. Subramanian, ISSCC 2023]

Bulky off-chip components, fast analog-to-digital converter, µ-wave signals

Fully CMOS-compatible readout operated at T<5K:

Spin qubit readout: measurement technique

[S. Subramanian, ISSCC 2023]

Bulky off-chip components, fast analog-to-digital converter, µ-wave signals

Fully CMOS-compatible readout operated at T<5K:

Compact readout based on current measurement

- Fully-integrated 150-nm CMOS technology (NO inductor or µw comp.)
- Direct charge-to-digital conversion

- Time division multiplexing architecture
- Low power consumption (1 mW/qubit)

[M. CASTRIOTTA et al., IEEE Solid-state Circuits Letters (2023)]

POLITECNICO MILANO 1863

G. Ferrari – Cryogenic electronics

Programmable floating-gate comparator

- V_{th} few mV! Process variations are critical
- Digital-to-Analog Converter (DAC): power consumption, size

Floating node charged at V_{th}
 V_{out} > Compact and low power

How do we change the charge?
How to compensate for the process variations?

Floating gate in standard CMOS technology

[M. Castriotta, Solid State Electronics 189 (2022)]

Floating gate in standard CMOS technology

Hot electron injection using a p-type MOSFET
 The electrons are removed by tunneling (coarse global resetting of the floating gates)

[M. Castriotta, Solid State Electronics 189 (2022)]

Hot electron injection in p-type FG transistor fine-tuning of floating node charge

holes collide with sufficient energy (≈ 3/2 E_{gap}) to liberate additional electron-hole pairs

- $V_{SFG} > |V_T|$ (ON)
- V_{SD}>>0V (high electric field)
- $V_{SD} >> V_{SFG} (V_{FG} > V_D)$

(i.e. threshold voltage of the FET)

[M. Castriotta, Solid State Electronics 189 (2022)]

Characterization of the FG comparator at 4.2 K

Characterization of the readout at 4.2 K

150nm CMOS tech

No off-chip components!

		Threshold current: 1.1 nA
5		6 Sigma: 250 pA
f		Readout time: 500 ns
		Power consumption: 1.2 mW
		Active area: 0.04 mm ² (8 FGs)
14(00	

[M. CASTRIOTTA et al., IEEE Solid-state circuits letters (2023)]

POLITECNICO MILANO 1863

G. Ferrari – Cryogenic electronics

Summary

- Cryogenic CMOS circuits are feasible
 - Disadvantages:
 - higher threshold voltage
 - worse mismatch
 - poor simulation models
 - Advantages:
 - higher mobility
 - less thermal noise
 - less stray capacitances (faster devices)
- Transimpedance amplifiers (BW=30kHz, noise= 2.3pA_{RMS})
- RF and baseband spin qubit readout
- ... and also complex system-on-chip: see prototype of quantum controller by Intel (X. Xue et al., Nature, 2021)

Thank you for you attention!

